1,056 research outputs found

    Stochastic Interdigitation As a Toughening Mechanism at the Interface between Tendon and Bone

    Get PDF
    AbstractReattachment and healing of tendon to bone poses a persistent clinical challenge and often results in poor outcomes, in part because the mechanisms that imbue the uninjured tendon-to-bone attachment with toughness are not known. One feature of typical tendon-to-bone surgical repairs is direct attachment of tendon to smooth bone. The native tendon-to-bone attachment, however, presents a rough mineralized interface that might serve an important role in stress transfer between tendon and bone. In this study, we examined the effects of interfacial roughness and interdigital stochasticity on the strength and toughness of a bimaterial interface. Closed form linear approximations of the amplification of stresses at the rough interface were derived and applied in a two-dimensional unit-cell model. Results demonstrated that roughness may serve to increase the toughness of the tendon-to-bone insertion site at the expense of its strength. Results further suggested that the natural tendon-to-bone attachment presents roughness for which the gain in toughness outweighs the loss in strength. More generally, our results suggest a pathway for stochasticity to improve surgical reattachment strategies and structural engineering attachments

    Contact complete integrability

    Full text link
    Complete integrability in a symplectic setting means the existence of a Lagrangian foliation leaf-wise preserved by the dynamics. In the paper we describe complete integrability in a contact set-up as a more subtle structure: a flag of two foliations, Legendrian and co-Legendrian, and a holonomy-invariant transverse measure of the former in the latter. This turns out to be equivalent to the existence of a canonical R⋉Rn−1\R\ltimes \R^{n-1} structure on the leaves of the co-Legendrian foliation. Further, the above structure implies the existence of nn contact fields preserving a special contact 1-form, thus providing the geometric framework and establishing equivalence with previously known definitions of contact integrability. We also show that contact completely integrable systems are solvable in quadratures. We present an example of contact complete integrability: the billiard system inside an ellipsoid in pseudo-Euclidean space, restricted to the space of oriented null geodesics. We describe a surprising acceleration mechanism for closed light-like billiard trajectories

    An ex vivo culture model of kidney podocyte injury reveals mechanosensitive, synaptopodin-templating, sarcomere-like structures

    Get PDF
    Chronic kidney diseases are widespread and incurable. The biophysical mechanisms underlying them are unclear, in part because material systems for reconstituting the microenvironment of relevant kidney cells are limited. A critical question is how kidney podocytes (glomerular epithelial cells) regenerate foot processes of the filtration apparatus following injury. Recently identified sarcomere-like structures (SLSs) with periodically spaced myosin IIA and synaptopodin appear in injured podocytes in vivo. We hypothesized that SLSs template synaptopodin in the initial stages of recovery in response to microenvironmental stimuli and tested this hypothesis by developing an ex vivo culture system that allows control of the podocyte microenvironment. Results supported our hypothesis. SLSs in podocytes that migrated from isolated kidney glomeruli presented periodic synaptopodin-positive clusters that nucleated peripheral, foot process-like extensions. SLSs were mechanoresponsive to actomyosin inhibitors and substrate stiffness. Results suggest SLSs as mechanobiological mediators of podocyte recovery and as potential targets for therapeutic intervention

    Micro-mechanical properties of the tendon-to-bone attachment

    Get PDF
    The tendon-to-bone attachment (enthesis) is a complex hierarchical tissue that connects stiff bone to compliant tendon. The attachment site at the micrometer scale exhibits gradients in mineral content and collagen orientation, which likely act to minimize stress concentrations. The physiological micromechanics of the attachment thus define resultant performance, but difficulties in sample preparation and mechanical testing at this scale have restricted understanding of structure-mechanical function. Here, microscale beams from entheses of wild type mice and mice with mineral defects were prepared using cryo-focused ion beam milling and pulled to failure using a modified atomic force microscopy system. Micromechanical behavior of tendon-to-bone structures, including elastic modulus, strength, resilience, and toughness, were obtained. Results demonstrated considerably higher mechanical performance at the micrometer length scale compared to the millimeter tissue length scale, describing enthesis material properties without the influence of higher order structural effects such as defects. Micromechanical investigation revealed a decrease in strength in entheses with mineral defects. To further examine structure-mechanical function relationships, local deformation behavior along the tendon-to-bone attachment was determined using local image correlation. A high compliance zone near the mineralized gradient of the attachment was clearly identified and highlighted the lack of correlation between mineral distribution and strain on the low-mineral end of the attachment. This compliant region is proposed to act as an energy absorbing component, limiting catastrophic failure within the tendon-to-bone attachment through higher local deformation. This understanding of tendon-to-bone micromechanics demonstrates the critical role of micrometer scale features in the mechanics of the tissue
    • …
    corecore